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Abstract. The kinetics of the random sequential adsorption of line segments has been studied
on a disordered substrate occupied with point impurities. The coverage of the surface and the
jamming limits are calculated by a Monte Carlo method. The coverageθ(t) has an asymptotically
exponential behaviour at low concentration of the impurities. The jamming limits depend on
the concentration of the impuritiesp. At p < p∗ the jamming limits decrease asp increases.
At p > p∗ the jamming limits increase asp increases. The one-dimensional results are in good
agreement with Ben-Naim and Krapivsky’s analytic results. The coverage and the jamming
limits on a two-dimensional disordered lattice are similar to the one-dimensional cases. The
jamming limits decrease monotonically as the length of line segments increases. The minimum
locations of the jamming limits for both one and two dimensions are on the same values for a
given length of thek-mer.

1. Introduction

Random sequential adsorption (RSA) of line segments without overlapping on the lattice is
a famous model of non-equilibrium deposition process [1–3]. An object of a given shape
is deposited randomly, sequentially and irreversibly on a substrate without diffusion and
detachment. The incoming objects do not overlap previously deposited objects. The kinet-
ics of the coverage of the surface and its infinite time limit, the so-called jamming limit,
are the interesting physical quantities. The adhesion of proteins and colloidal particles on a
uniform surface [4, 5], are examples of the experimental realization ofRSA. RSA of the linear
k-mers on a one-dimensional lattice was exactly solved by various methods [6–8]. How-
ever, the analytic solution is not known in higher dimensions.RSA on disordered substrates
was studied numerically by Milŏsevíc andS̆vratíc [9]. The jamming limits depend on the
length of the segment and on the previous occupation of the substrate by the impurities. Re-
cently, Ben-Naim and Krapivsky [10] solved the kinetics ofRSA of thek-mers exactly on the
one-dimensional lattice occupied initially by the point impurities with a random distribution.

In this work I have studied the kinetics ofRSA on the disordered substrate on the one-
and two-dimensional lattice using a Monte Carlo method.

2. Kinetics of RSA

In RSA on a lattice the kinetics of the coverage behave exponentially [1–3]

θ(t) = θ(∞) − A exp(−t/σ ) (1)
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whereA andσ are parameters which may depend on the shape and size of the absording
objects. In the long-time limit the coverage converges to the jamming limitθ(∞). In one-
dimensionalRSA, the analytic solution of the kinetics is simply obtained by rate equations.
The k-mers deposit randomly on the lattice with a constant rate. An adsorption event is
successful if allk-sites are empty. LetPm(t) denote the probability thatm consecutive sites
are empty. The rate equations for these probabilities are [11]

dPm(t)

dt
= −(k − m + 1)Pk − 2

m−1∑
j=1

Pk+j m 6 k (2)

= −(m − k + 1)Pm − 2
k−1∑
j=1

Pm+j m > k . (3)

The first term on the right-hand side in equations (2) and (3) corresponds to thek-mer fully
covering them-site sequence (m 6 k) or filling with it (m > k). The second term describes
the probabilities of deposition events in which them-site sequence is occupied by a particle
overlap by the incomingk-mer. The coverage is given by

θ(t) = 1 − P1(t) . (4)

In the random initial distribution of the point impurities with the initial concentrationsp,
the initial probability is given byPm(t = 0) = (1−p)m [10]. Using these initial conditions,
Ben-Naim and Krapivsky obtained the coverage as [10]

θp(t, k) = p + k(1 − p)k
∫ t

0
du exp

[
−u − 2

k−1∑
j=1

1 − e−ju

j
(1 − p)j

]
. (5)

For p = 0, the coverage is equal to the result for the clean surface. The jamming limit for
dimer deposition (k = 2) is

θp(∞, k = 2) = lim
t→∞ θ(t) = 1 − (1 − p) exp[−2(1 − p)] . (6)

The jamming limit has a minimumθmin(∞) = 1 − e−1/2 = 0.8160. . . at p = 1
2.

3. Numerical method and results

I generate a one-dimensional lattice of sizeL = 105 and a two-dimensional lattice of size
256×256, and randomly occupy the point impurities with concentrationsp. Select randomly
one of the lattice points. If the chosen site is occupied, the attempt is abandoned and a new
site is selected. If the site is empty, check (k−1) neighbour sites in a randomly chosen direc-
tion. If all successivek-sites are unoccupied, deposit thek-mer. The coverageθ(t) is defined
as the number of points covered both by thek-mers and by the point impurities. The time is
counted for the number of attempts to select the lattice sites and scaled by the total number
of lattice sites. I use the periodic boundary conditions and average for 1000 configurations.

Figure 1 shows the coverageθ(t) against time on the one-dimensional lattice for the
deposition of dimers. The Monte Carlo results (symbols) are in good agreement with the
analytic results (curves) of (5). The coverages increase rapidly at short times and converge
to the jamming limits at long times. The coveragesθ(t) increase exponentially regardless
of the point impurities. The jamming limits decrease as the concentrations of the point
impurities increase.

In figure 2(a) I calculate the jamming limitsθp(∞) about the point impurities for
k = 2 (t), 3 (�) and 4 (×). The full curves are the analytic results of (5) which are
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Figure 1. The coverageθ(t) versus time on a one-dimensionalL = 105 lattice for the deposition
of dimers. The concentrations of the point impurities arep = 0 (full curve, t), 0.3 (dotted curve,
�), 0.5 (short-broken curve,×). The symbols are Monte Carlo results and the curves are analytic
results.

Figure 2. (a) The jamming limitsθp(∞) and (b) the purek-mer jamming limitsθp(∞, k) − p

about the point impurities fork = 2 ( t), 3 (�), and 4(×) on a one-dimensional lattice. The
full curves are the analytic results and the symbols are Monte Carlo results.

calculated numerically using a Bode integration method. The Monte Carlo results are also
in agreement with the analytic results. At low concentrations of the point impurities the
jamming limits decrease with increasingp. In this regime the blocking effects by the point
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Figure 3. The coverageθ(t) versus time on a two-dimensional 256× 256 square lattice for
deposition of (a) dimers and (b) 16-mers for the various concentrations of the point impurities.
The concentrations of the point impurities arep = 0 (full), 0.1 (dotted), 0.2 (short-broken), 0.3
(long-broken), and 0.4 (chain).

impurities are weak. At high concentrations of the point impurities the jamming limits
increase whenp increases. The blocking effects are strong at highp. The quenched im-
purities are already close to the jammed states. Thus, only small fractions of thek-mers
are adsorbed on the surface. The minimum point of the jamming limits decreases with in-
creasing length of thek-mers. I observed the minimum point atp∗ = 0.5 and the jamming
limit as θmin(∞) = 0.815(3) for the deposition of dimers. The previous simulation results
of Milo s̆evíc andS̆vrakíc exhibit a minimum point atp∗ = 0.13 andθmin(∞) = 0.8564 [9].
Both values differ from the results of this work and the exact results of (5).

Figure 2(b) shows that the jamming limits of the purek-mers subtracting the
concentration of the point impurities from the coveragesθp(∞, k) plotted against the point
impuritiesp on the one-dimensional lattice. The purek-mer jamming limitsθp(∞, k) − p

decrease monotonically as the point impurities increase. The analytic results (curves)
and Monte Carlo results (symbols) are in good agreement with each other. The initial
occupations of the impurities decrease the empty point of the substrate. Thus, the purek-mer
jamming limits decrease when the point impurities increase. Atp > p∗, the contributions
of the point impurities on the coverages are dominant and the jamming limits increase.

Figure 3 shows the coverageθ(t) versus time on the two-dimensional 256× 256
lattice for deposition of (a) dimers and (b) 16-mers for various concentrations of the
point impurities. For deposition of dimers (k = 2) the jamming limits decrease when
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Figure 4. (a) The jamming limitsθp(∞, k) and
(b) the purek-mer jamming limitsθp(∞, k) − p

versus the concentrations of the point impurities
for k = 2 (�), 8 (4), and 16 (×) on a 256× 256
square lattice.

the concentration of the point impurities increases. For deposition of 16-mers the jamming
limits decrease atp < 0.2, but increase atp > 0.2. The blocking by the impurities is
dominant in the deposition of the long lineark-mers.

Figure 4(a) shows the jamming limitsθp(∞) versus the concentration of the point
impurities. At p = 0 the jamming limits areθ(∞) = 0.904(9) (k = 2), 0.745(3) (k = 8),
and 0.709(3) (k = 16) which are in good agreement with previous results [1, 2]. For
deposition of dimers the jamming limits decrease up top = 0.4. At k = 8 and 16 the
jamming limits have a minimum point. The minimum points of the jamming limit are
p∗ = 0.35 at k = 8 andp∗ = 0.25 at k = 16, respectively. The minimum points shift to
smaller values ofp as the length of thek-mers increases. The effects of impurities are very
dominant for longk-mers.

Figure 4(b) shows the purek-mer jamming limitsθp(∞, k) − p against the point
impurities p for the various lengths ofk-mer on a two-dimensional square lattice. The
behaviour of the purek-mer jamming limits are similar to the one-dimensional case. When
the length of thek-mer increases the purek-mer jamming limits decrease rapidly. As the
point impurity p is larger than the minimum valuep∗, the small fractions of thek-mer
adsorb on the substrate.

Figure 5 shows the coverageθp(∞, k) as a function of the length of thek-mers for
various point impurities. The largek-limits of θp(∞, k) have been studied previously in
one [12] and two dimensions [1, 13]. The largek-limit corresponds to the continuum limit
and has a 1/k corrective term. Atp = 0 the jamming limits converge asθp=0(∞, k) =
θ(∞, ∞)+C1(1/k)+C2(1/k2). Bonnieret al [14] obtained the coefficients asθ(∞, ∞) =
0.660(2), C1 = 1.071, andC2 = 0.827 by a Monte Carlo method andθ(∞, ∞) =
0.664, C1 = 0.827, andC2 = −0.699 by Pad́e analysis on the two-dimensional square
lattice. In the present work I calculated the jamming limits of adsorption of infinitely long
segments asθ(∞, ∞) = 0.667(4) and the fitting coefficient asC1 = 0.652 andC2 = −0.357
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Figure 5. The coverageθp(∞, k) versus the
length of thek-mers for p = 0 ( t), 0.02 (�),
0.06 (4), 0.08 (�), and 0.1 (∇) on a 256× 256
square lattice.

Figure 6. Plot of the minimum locations of the
jamming limits as a function ofk on a one-
dimensional lattice(4) and a two-dimensional
square lattice (t).

for thep = 0 case (full curve in figure 5). This result is in good agreement with the previous
ones [14]. At fixedk the jamming limitθp(∞, k) decreases with increasing concentration
of the point impuritiesp. At fixed p θp(∞, k) decreases as the length of thek-mers
increases. The jamming limits are nearly equal values at the long length ofk-mers (k > 48)
in p > 0.06. When the length of thek-mer is longer, the blocking effects on the deposition
of a k-mer by the point impurities are stronger. The probability of depositing thek-mers
decreases abruptly at the long length ofk-mers at high concentrations of the impurities. At
p > 0 one observes that the jamming limits cannot interpolate as for thep = 0 case.

Figure 6 shows a plot of the minimum location of the jamming limits as a function
of the k-mers. The minimum values decrease monotonically as the length of thek-mers
increases in both one and two dimensions. The minimum locations of the jamming limits
for a given k are at the same values for both one and two dimensions. At smallk the
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minimum locations in both one and two dimensions are slightly different from each other.
At large k the results of one and two dimensions collapse to a line. I propose that the
collapse of the minimum point is because the point impurities lead to one-dimensional-like
kinetics in two-dimensional adsorption at long lengths of thek-mer. I would expect that
these numerical results should encourage someone else to theoretical work in these fields.

4. Conclusion

The kinetics and the jamming limit of the deposition ofk-mers on a disordered substrate
are studied by a Monte Carlo method. The one-dimensional results are in good agreement
with the analytic predictions. At two dimensions the jamming limits have a minimum point
at a particular concentration of the impurities. The minimum value decreases as the length
of the k-mer increases. The jamming limits depend strongly on the blocking effects of
the impurities. I observed that the jamming limits decrease monotonically with increasing
length of thek-mers atp > 0. The purek-mer jamming limits decrease monotonically
about the point impurities. The minimum values of the jamming limits for a givenk have
the same values in both one and two dimensions.
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